MATHEMATICS

MPC2

Unit Pure Core 2

Tuesday 13 January 20099.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC2.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The diagram shows a sector $O A B$ of a circle with centre O and radius 10 cm .

The angle $A O B$ is 0.8 radians.
(a) Find the area of the sector.
(b) (i) Find the perimeter of the sector $O A B$.
(ii) The perimeter of the sector $O A B$ is equal to the perimeter of a square. Find the area of the square.

2 (a) Use the trapezium rule with four ordinates (three strips) to find an approximate value for

$$
\int_{1.5}^{6} x^{2} \sqrt{x^{2}-1} \mathrm{~d} x
$$

giving your answer to three significant figures.
(b) State how you could obtain a better approximation to the value of the integral using the trapezium rule.
(1 mark)

3 The diagram shows a triangle $A B C$.

The size of angle A is 63°, and the lengths of $A B$ and $A C$ are 7.4 m and 5.26 m respectively.
(a) Calculate the area of triangle $A B C$, giving your answer in m^{2} to three significant figures.
(b) Show that the length of $B C$ is 6.86 m , correct to three significant figures.
(c) Find the value of $\sin \boldsymbol{B}$ to two significant figures.

4 The diagram shows a sketch of the curves with equations $y=2 x^{\frac{3}{2}}$ and $y=8 x^{\frac{1}{2}}$.

The curves intersect at the origin and at the point A, where $x=4$.
(a) (i) For the curve $y=2 x^{\frac{3}{2}}$, find the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $x=4$.
(2 marks)
(ii) Find an equation of the normal to the curve $y=2 x^{\frac{3}{2}}$ at the point A.
(4 marks)
(b) (i) Find $\int 8 x^{\frac{1}{2}} \mathrm{~d} x$.
(2 marks)
(ii) Find the area of the shaded region bounded by the two curves.
(4 marks)
(c) Describe a single geometrical transformation that maps the graph of $y=2 x^{\frac{3}{2}}$ onto the graph of $y=2(x+3)^{\frac{3}{2}}$.

5 (a) By using the binomial expansion, or otherwise, express $(1+2 x)^{4}$ in the form

$$
1+a x+b x^{2}+c x^{3}+16 x^{4}
$$

where a, b and c are integers.
(b) Hence show that $(1+2 x)^{4}+(1-2 x)^{4}=2+48 x^{2}+32 x^{4}$.
(c) Hence show that the curve with equation

$$
y=(1+2 x)^{4}+(1-2 x)^{4}
$$

has just one stationary point and state its coordinates.

6 (a) Write each of the following in the form $\log _{a} k$, where k is an integer:
(i) $\log _{a} 4+\log _{a} 10$;
(1 mark)
(ii) $\log _{a} 16-\log _{a} 2$;
(1 mark)
(iii) $3 \log _{a} 5$.
(1 mark)
(b) Use logarithms to solve the equation $(1.5)^{3 x}=7.5$, giving your value of x to three decimal places.
(c) Given that $\log _{2} p=m$ and $\log _{8} q=n$, express $p q$ in the form 2^{y}, where y is an expression in m and n.
(3 marks)

7 (a) Solve the equation $\sin x=0.8$ in the interval $0 \leqslant x \leqslant 2 \pi$, giving your answers in radians to three significant figures.
(b) The diagram shows the graph of the curve $y=\sin x, 0 \leqslant x \leqslant 2 \pi$ and the lines $y=k$ and $y=-k$.

The line $y=k$ intersects the curve at the points P and Q, and the line $y=-k$ intersects the curve at the points R and S.

The point M is the minimum point of the curve.
(i) Write down the coordinates of the point M.
(ii) The x-coordinate of P is α.

Write down the x-coordinate of the point Q in terms of π and α.
(iii) Find the length of $R S$ in terms of π and α, giving your answer in its simplest form.
(c) Sketch the graph of $y=\sin 2 x$ for $0 \leqslant x \leqslant 2 \pi$, indicating the coordinates of points where the graph intersects the x-axis and the coordinates of any maximum points.

8 The 25th term of an arithmetic series is 38 .
The sum of the first 40 terms of the series is 1250 .
(a) Show that the common difference of this series is 1.5 .
(b) Find the number of terms in the series which are less than 100 .

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

